
seeCell: Visualization and Tracking Dedicated to Cell Analysis

Robin Mange1, Pablo de Heras Ciechomski1 and Melody Swartz2

1Visualbiotech

PSE-C EPFL, 1015 Ecublens, Switzerland

www.visualbiotech.ch
2Laboratory for Mechanobiology and Morphogenesis (LMBM)

LMBM EPFL, 1015 Ecublens, Switzerland

robin@visualbiotech.ch, pablo@visualbiotech.ch, melody.swartz@epfl.ch

Keywords: realtime system, computer graphics, cell tracking.

Abstract: This paper presents a method for the real-time tracking and rendering of dendritic cells in a stream of mi-

croscopes images, as implemented in the software seeCell (TM) developed by Visualbiotech (Mange, 2008).

The main guideline is how computer graphics technology can increase the relevancy of the acquired data by

creating new perspectives on the stream of information. Such an approach was widely used in the platform

described in this paper, mostly to improve its accessibility to the scientific community.

1 Introduction

The domain of in-vivo analysis is continuously evolv-

ing and therefore the platforms dedicated to it have

to progress and innovate as well. Computer graphics

technology is widely used to perform this evolution

since it can offer new aspects to analytic tools. Such

an example is the exposition of collected results in

an appropriate way to improve their relevancy and in-

crease their meaning for the user. Moreover, using

this combined power of analysis and visual worlds,

it is possible to increase the interactive possibilities

(see Section 2.3). These different advantages added

to scientific applications permit to enhance their qual-

ities and therefore their interest greatly. Indeed, pro-

viding a better graphic design as well as an higher

level of interaction make for an easier acceptance

through the scientific community. seeCell is such

a platform, where the visualization and analysis do-

mains are merged to improve accessibility and instant

assimilation of complex behaviors to researchers.

seeCell was first designed for the Laboratory for

Mechanobiology and Morphogenesis (LMBM) from

the life science faculty of the Swiss Federal Insti-

tute of Technology (EPFL). Its goal was to help re-

searchers to track dendritic cells in an easy and in-

tuitive way, offering an alternative to existing tools

(imageJ, ). The dendritic cells are part of the mam-

malian immune system as explained in (Banchereau

and Steinman, 1998). The development of this soft-

ware was planned based on the two aspects cited

above, which are the analysis and the visualization.

The first obstacle encountered was how to melt them

in a good product, exposing analytic contents to the

user in a good and instant way. This kind of merging

had to be done under a scientist’s control to be sure

to interpret the gathered data in the right way and to

avoid any alteration of them.

2 seeCell

seeCell is composed of three main parts which are:

a rendering engine, a tracking engine and an inter-

face engine. The rendering engine’s role is to visually

expose the cell data extracted from the image inputs.

It has also to take care of the user interface display

which won’t be discussed in this paper. Regarding

the tracking engine, its aim is to gather the maximum

of information from the cells contained in a stream of

images. Eventually, the interface takes care of every

kind of interaction between the user and the software

such as mouse or keyboard inputs. Since the track-

ing task can be quite expensive, the software was de-

signed using a multi-threading system (Steve Kleiman

and Smaalders, 1996). In the current version, a main

thread is taking care of the rendering and the inter-



actions handling, while a secondary thread hosts the

tracking engine. This approach allows to keep the ren-

dering and the user inputs handling as fast as possible

and independent from the image processing rate.

2.1 Visualization

The visualization engine created for seeCell has as a

primary goal to increase the impact of results acquired

by the tracking engine. In that way, it was opted to use

an overlay of the tracked contents over the original

image, following the assertion: ”what you see is what

you got”. This is a good way to verify the precision

of the analytic core (see Section 2.2). Moreover, this

allows also to check and modify the different parame-

ters used for the tracking process in an interactive and

visual manner since you observe the changes in real-

time (see sub-Section 2.2.1). Figure 1 shows an im-

age with some dendritic cells tracked and overlapped

to the initial image.

Figure 1: Three dendritic cells with their detected mem-
brane overlayed.

This rendering pipeline is structured using layers,

represented by different RGBA textures (32-bits per

pixel). The alpha channel is used to create the mod-

ulation between each layer which is based on trans-

parency. This method offers many advantages in

terms of usage and simplification. First, it allows a

fast computation of the cell layer since one can keep

the detected entities in a per pixel basis and therefore

simplify the handling of data from the tracking en-

gine. Another advantage is the fact that working with

textures is done in a per-bit basis, permitting the us-

age of bit level optimization (Fog, 2008). Since the

final image is computed using a modulation scheme

between textures directly on the main processor, no

acceleration capabilities from the graphic card is re-

quired. Only the end result of the visualization is sent

to the video card for screen updates. Figure 2 shows

one decomposition of a final display in several layers

which are the original input image, the tracked con-

tents and another one called gradient layer which is

an extra stream of data handled by seeCell and is ex-

plained later in this section.

Figure 2: The rendering pipeline using Layer Modulation.

The cell layer is constructed from the tracking engine

extracted data, by enabling each pixel detected as a

cell using the alpha byte and setting them to a certain

color depending to its state. In the general case, there

are two different states for an enabled pixel: it can

either belong to the outline of the cell or to its core.

This decision is made by counting the number of

enabled neighbors of a pixel.

Using this superposition technique, one can add

extra visual features by inserting new layers. Of

course like most tracking tools you can display the

independent trajectories of the particles, in our case

cells, but you can also display the trail left by each one

of them allowing a complete pathway study by check-

ing what was sensed and touched by whom. Figure 3

shows the trail of one cell superposed to the original

image with transparency.

Figure 3: The trail of one cell displayed.

Coloring the reconstructed cells themselves can also

bring additional information such as their membrane

activity. Several special visualization mode were cre-

ated focusing on certain specific aspect of the cells.



Another interesting aspect of computer graphics us-

age is the possibility to simulate a 3D rendering of

the tracked contents in a way to get an extra dimen-

sion for trajectory analysis. It is then possible to look

at the motion in x or y relative to the time which gives

supplementary information. Figure 4 shows this kind

of representation.

Figure 4: 3D representation of cells with their trajectories.

The Laboratory for Mechanobiology and Morphogen-

esis was initially interested in the study of interfer-

ences between a cell colony and a gradient generated

by a chemical reaction. Indeed, the dendritic cells are

sensing the world around them and move according to

some criteria. By using the layer structure, it is pos-

sible to superpose another stream of images on the

top of the initial ones. With this method, the user

can import into the software one layer with the migra-

tion of the cells and one layer with the corresponding

gradient distribution in the image. One more time,

the visualization is very helpful in that case, since

it helps to study the reaction of cells to certain data

flow such as chemical intensity distribution over time.

To clarify even more the assimilation of such behav-

ior, the cells can be colored depending on this addi-

tional layer, showing the local gradient distribution as

shown in Figure 5. You can see a cell tracked with an

extra stream of data containing gradient distribution.

Figure 5: The cell in the box is colored from local min to
max intensities according to the gradient layer loaded.

2.2 Tracking

The tracking engine is the analytic core of seeCell.

Indeed, this module is used to detect cell membranes.

Its accuracy is primordial since numerical stability is

important. As many tracking tools (Li and Kanade,

2007), it is working in two phases which are the cell

detection and the cell labeling. Since this tracking

process is a complex task and can be slow, many opti-

mization were used, such as bounding boxes (Koziara

and Bicanic, 2005) to limit the number of pixels to

process.

2.2.1 Cell Detection

The role of Cell detection is to find each pixel of

the input image that belongs to a cell membrane.

This task is achieved using mainly two different ap-

proaches. The first method is based on the creation of

mathematical models, whereas the second method is

based on object detection. Since the cells we want to

track are alive and can deform, the first one is not ap-

plicable, therefore the second one was chosen. Two

steps are required for cell detection. First an edge

detection algorithm is applied allowing a partial ex-

traction of cell outlines. Such a detection algorithm

can be found in (Gonzalez and Woods, 1992). Af-

terwards, a hole filling method allows to finalize the

detection of those membranes. Figure 6 shows the

progressive result of the detection of a cell after each

of these steps.

Figure 6: The results of the cell detection after each detec-
tion step.

This entire phase is responsible for the accuracy of

the tool. In this end, and because a tracking engine is

usually based on this approach, some parameters can



be tuned by the user to optimize the process depend-

ing on the image inputs. Such values are the threshold

used for the outline detection and the maximum size

of holes to fill which is dependent on the size of the

cells the user wants to analyze. Figure 7 shows how

the membrane detection of a cell is affected when us-

ing different values for the parameters.

Figure 7: The different thresholds allow an adjustment of
the tracking process.

This detection algorithm that was designed specifi-

cally for dendritic cell tracking can be changed to

adapt the tool to different applications such as parti-

cles tracking or some other more specific tasks. Since

seeCell was designed to be an extendable platform,

it is possible to make it evolve easily to increase its

possibilities, in term of tracking as well as in terms of

output capabilities.

2.2.2 Cell Labeling

This second phase has for aim to assign a unique

id to each cell using a propagation method. This

allows to make a distinction between the different

entities for the extracted information as well as for

the user. Indeed, using this id, the user can select

one or several cells and have it visually expressed

on his screen. In the same time, he will get the

corresponding statistics which are stored in memory

per-cell.

This propagation method is done using a person-

alized stack structure to avoid any memory overflow

problem than could occur with the use of a recursive

method. Of course, this task is done differently if you

are tracking the first frame of an image stream or an

intermediate one. If you track one cell that was not

detected before, you can start from any of its pixels,

attribute a new label to it and propagate it to all the

others. This assures to have the same id for each pixel

of one cell. If the cell you want to track was already

previously detected (for instance in a previous frame)

you need to start the propagation algorithm from a

pixel that has an old id, certifying that you will keep

the same id for a cell over time. This is absolutely

necessary for keeping the statistics gathered linked to

the right cell.

2.3 Interactions

One important aspect of computer graphics tech-

niques in seeCell is about interaction. Indeed, using

color modulation of the independent cells, it is pos-

sible to select and deselect them to get local results.

This also simplifies the understanding process of spe-

cific behaviors since they are underlined with the help

of visualization. Figure 8 shows an image tracked

with three plots showing the corresponding values be-

longing to the cells selected by the user.

Figure 8: The plots give information about selected cells in
real-time.

The different statistics that are currently gathered

from each cell with the help of the tracking engine

are their size, their position and speed in x and y, their

dendritic or membrane activities among others. Their

accuracy mainly depends on the parameters depicted

in the previous section.

3 Results

seeCell in its actual state is capable to perform

real-time tracking of stream of images at a rate of

30 frames per seconds in average on a dual-core

1.66GHz laptop with a Nvidia GeForce 7400 with

2GB of Ram. With the help of the multi-threading

support, the rendering of the software as well as the



inputs handling are always done at a rate of 60 frames

per second. The accuracy of the different statistics ex-

tracted from the cells depends on the parameters used

for the detection algorithms. When those are well set,

an error of 1% has to be considered, which is quite

satisfying.

4 Conclusion

The use of visualization techniques inside a tool such

as seeCell can really improve its accessibility to the

scientific community and increase the assimilation of

complex processes. Regarding the tracking, there are

two main problems that often occur in such applica-

tions. The first one is when an object is moving too

fast relative to the frame rate since no pixels in com-

mon are found and therefore it is hard to link them.

Another problem is when several objects interfere to-

gether. Indeed, when two objects merge, it is hard

to distribute the pixels among them. Moreover, when

they split again, it is hard to decide which cell inherits

from which label. A method was found to avoid this

problem, but this is not part of this paper.

Acknowledgements

Thanks to Ulrike Haessler for her support and her

advices during the whole creation process of see-

Cell. Many thanks as well to Ivana Arsic de Heras

Ciechomska for her help on tracking and signal pro-

cessing algorithms.

REFERENCES

Banchereau, J. and Steinman, R. M. (1998). Dendritic cells
and the control of immunity.

Fog, A. (2008). Optimizing software in c++.

Gonzalez, R. C. and Woods, R. E. (1992). Digital image
processing.

imageJ. A tool including image processing and parti-
cle tracking through the particletracker plugin written
by guy levy at the computational biophysics lab, eth
zurich.

Koziara, T. and Bicanic, N. (2005). Bounding box collision
detection.

Li, K. and Kanade, T. (2007). Cell population tracking and
lineage construction using multiple-model dynamics
filters and spatiotemporal optimization.

Mange, R. (2008). Rendering techniques for dynamic real-
time analysis of biology. Master Thesis, EPFL.

Steve Kleiman, D. S. and Smaalders, B. (1996). Program-
ming with threads.


