
Two-Phased Real-Time Rendering of Large Neuron Databases

Pablo de Heras Ciechomski, Robin Mange and Achille Peternier
Visualbiotech

PSE-C EPFL, 1015 Ecublens, Switzerland

www.visualbiotech.ch

pablo@visualbiotech.ch, robin@visualbiotech.ch, achille@viusalbiotech.ch

Keywords: computer graphics, visualization, computational biology, neuroinformatics

Abstract: By dividing the rendering of neurons into two modes called exploration mode and static mode, the user can

explore large neuron databases interactively. The exploration mode contains only the necessary visual char-

acteristics of neurons for the user to be able to navigate inside of the circuit, with an upper limit of primitives

used. It is done in a forward rendering fashion. The static mode is of a higher visual quality, where neurons

are rendered with a deferred shading technique, achieving a constant time update frequency.

1 Introduction

Figure 1: Selecting a neuron in GabrielStudio. Raw neu-
ron data courtesy the Blue Brain Project. Copyright Visual-
biotech 2006-2008, all rights reserved.

This paper presents a method for rendering large

amounts of three dimensional neurons in real-time in

the software GabrielStudio by Visualbiotech (Visu-

albiotech, 2008). The user can travel inside of the

data which describes neuronal circuits, with full six

degrees of freedom (6 DOF), similar to a virtual mi-

croscope. When the user is moving continuously the

mode is called exploration and when he stands still it

is called static. These two modes switch from one to

the other on the starting or stopping of camera move-

ment. Thus a user can explore large neuron circuits

interactively and enjoy a highly detailed view of them

when standing still.

This approach differs from (de Heras Ciechomski

and Mange, 2008) in that no longer is a static octree

employed, where all data such as triangles and indi-

vidual neuron segments must be duplicated. Instead

neurons are treated like a ”soup” of instances derived

from templates, that in turn can move or rotate in any

direction. This aids in reducing memory costs, which

quickly can become prohibitive with traditional grid

approaches. There is no prior building time to load-

ing a circuit, thus no waiting is needed. Aside from

these clear benefits this paper presents two different

ways of rendering that compliment each other.

In addition to the two rendering modes, neurons

are treated with a continuous per primitive, projected

level of detail and an approximate (sub-pixel accu-

rate) anti-aliasing method. The level of detail model

refers to a hierarchic rendering representation, op-

posed to the more common triangle reduction LOD

approach, see (Luebke et al., 2002) and (Schaufler

and Stürzlinger, 1995). Levels of detail are not merely

data reductions, instead they reflect the visual appear-

ance of neurons.



2 Exploration Mode

An exploration mode is engaged whenever the user is

turning the point of view of the virtual microscope. Its

purpose is to be scalable in terms of rendering speed,

benefiting a real-time exploration of a large neuronal

circuit. The rendering method utilized is called for-

ward rendering, which means that each pixel on the

screen has been fully evaluated at the time it is ren-

dered, so that no extra processing is needed when the

image is composited. Most graphics cards work best

in a batched rendering mode, where reading back re-

sults from the graphics card to the system memory is

too slow to be used for real-time purposes, as it stalls

the graphics pipeline, see (Haines, 2006).

2.1 Limiting Primitives

The smallest graphics primitive on a graphics accel-

erator card is usually a triangle or a point (which on

most hardware is emulated using a triangle), and a

graphics card can handle a set amount of triangles or

pixels painted. Most geometric scenes are triangle or

vertex bound, which is why the primitive counter in

the presented solution is set to be individual trian-

gles or quadrilaterals. A scene consists of neurons,

which in turn individually consist of the soma or cen-

ter point of the body, which branches out into thick

dendrites that in turn branch out into thinner and thin-

ner dendrites. When representing a neuron the soma

is usually the most important to show, then the thicker

or more visible dendrites and lastly thinner dendritic

branches.

The central feature of the problem is to distribute

the set limit amount of graphical primitives, on the

most important neurons and dendrites, see figure 2. A

brute force method is to set the representational score

for all dendritic parts of neurons and sort them ac-

cordingly. Then render the sorted list until the set

limit amount is reached. This is all well, as long as

the number of neurons and dendrites is low, but since

dendritic parts quickly become numerous it is a limit-

ing factor, see figure 3. The chosen solution uses, al-

beit not optimal in terms of quality, instead to sort on

the soma center point and to test dendrites of nearby

neurons first.

2.2 Dendritic Sampling LOD

Instead of using a distance measure to decide if a neu-

ron or part of a neuron is visible, the size in pixels of

the hierarchy is the deciding factor. The closer to the

viewer, the bigger the size in pixels of the part and the

bigger the chance it will be visible. If parts of neurons

Figure 2: Neurons are represented as diameter thick lines or
segments and lines. An ambient occlusion pass is added to
emphasize the depth. (c) 2007 copyright Visualbiotech, all
rights reserved.

Figure 3: The complexity of the neuron forest quickly
grows with the number of dendrites shown on screen. Copy-
right 2007 Visualbiotech, all rights reserved.

are drawn as triangles, aliasing will occur when said

parts (often dendrites) become less than a pixel wide.

To ensure this does not occur, GabrielStudio renders

all sub-pixel parts as one pixel wide lines, thus remov-

ing the sub-pixel precision problems. This does lead

to aliasing in the opposite direction, such that parts

that should be invisible become visible, however from

a point of view of neuroinformatics it is better over-

represent this information.

A dendrite consists of a string of points with diam-

eters such that they describe volumetric tubes. Each

pair of points on the dendrite is treated separately.

When a tube between the points becomes too thin, it is

represented using a pixel wide line and when thicker

as an oriented quadrilateral, see (de Heras Ciechom-

ski and Mange, 2008) and (Stoll et al., 2005). The



number of points used to represent the dendrite itself,

are dependent on the projected size of the dendrite

such that when bigger, the more samples are used.

This ensures that curved dendrites are treated prop-

erly when closer to the viewer.

Figure 4: An example overview of different passes applied
to a deferred shading pipeline. (Leadwerks, 2008).

3 Static Mode

When the user is engaged in the static mode, the cam-

era does not move but the user can select neurons to

be clamped and watch simulation data replays on high

detail mesh models of neurons. The first phase of the

static mode is the building of the deferred rendering

G-buffer (see (Shishkovtsov, 2005)) which holds all

the data necessary for the pixel to be evaluated such

as color, lighting, textures and simulation values. It is

the most costly phase and requires that the user waits a

few seconds before the high resolution image appears.

After the initial seeding phase the deferred rendering

pipeline takes over.

3.1 Deferred Shading

Deferred shading or rendering, entails evaluating

lighting computations, such as surface shading and

simulation coloring at a later stage. The opposite of

deferred shading is called forward rendering and in-

volves compositing each pixel of the final image dis-

regarding visibility of said fragment. In a deferred

pipeline only visible pixels are treated. The final color

is calculated for the red component in this example as

di f f = max(dot(normal, light),0) (1)

colorr = texturer ∗ simr ∗di f f (2)

colorr = colorr(0.5+ exp(di f f , lumin)) (3)

This formula can be simplified to

colorr = simr ∗ sur f acer (4)

Using the above short form one can separate the

simulation color update of the neuron to a per visible

pixel multiplication, given that the other parameters

are known. In deferred shading the above formulas

are sometimes called the G-buffer. Since textures are

grey scale the simulation color is used to indicate a

selected neuron or a simulation color.

3.2 Constant Time Rendering

Employing the deferred shading pipeline the user

knows exactly the visible pixels, which neuron, den-

drite and part of dendrite the pixels belong to and their

separable surface constant. The simulation data base

can now be queried using the exact amount of simu-

lation values, which is important as simulation values

per frame, range in the hundreds of millions for a cir-

cuit of 10’000 neurons. On average a few thousand

to a few hundred thousand simulation values are re-

quired for the visible pixels. This a reduction of a

minimum 1000 times up to 100’000 times of the sim-

ulation data required to read from the database.

Not only is the simulation query and its applica-

tion constant in time, but also its rendering. The up-

date frequency is normally in the hundreds of frames

per second on an average desktop PC.

3.3 Special Effects

Since the rendering is almost for free in the static

mode several special effects are added on top of the

graphics buffer such as screen space ambient occlu-

sion as seen in figures 6 and 2. It works by measuring

nearby depth values averaging them and writing them

as a shading value for that pixel, see (Tarini et al.,

2006).

4 Results

The following results are acquired on a standard lap-

top with 2 GB internal memory, an Nvidia graphics



Figure 5: An example of deferred rendering in GabrielStu-
dio with a screen space ambient occlusion effect. Close up
neurons are represented as meshes. Copyright 2007 Visual-
biotech, all rights reserved.

accelerator card with 256 MB memory and a dual core

Intel processor running Windows XP. It is a standard

computer from 2006, to compare with the massive

parallel workstation of 32 processors, 300 GB and 16

graphics cards of (de Heras Ciechomski and Mange,

2008).

The free exploration mode is run with a limit of

100’000 primitives in total, where the scene consists

of 10’000 neurons, and where only a fraction of all

dendrites are visible. Since the LOD system is based

on projected size, the most visible ones are drawn

first. The dendrites are not smooth when seen from far

and are smooth when close up, because of the point

sampling rate increase. The user can choose with a

slider the rate of projected pixel importance. Another

slider sets the rate of dendritic point sampling. The

minimum frames per second is 20 and on average it is

30.

When the user stops and clicks on the static mode,

the last frame of the interactive mode is continuously

displayed and its simulation values are updated. How-

ever, it can last several seconds, depending on scene

complexity and if all neurons are chosen to be dis-

played as meshes. Most of the time users prefer the

soma, segment and line model with more primitives (1

million instead of 100’000) instead of a mesh based

representation for the static mode. The speed of the

static mode is around 100 to 120 frames per second.

The screen space ambient occlusion helps with

depth queues for large complex scenes, but is not

good for simulation data as the shading values will

alter the simulation scale values.

Figure 6: An example of deferred rendering in GabrielStu-
dio with a screen space ambient occlusion effect. Copyright
2007 Visualbiotech, all rights reserved.

5 Conclusion

Splitting rendering into an exploration mode and a

static phase, helps in terms of requiring less process-

ing for the interactive real-time mode and a very quick

and highly detailed static mode. The current initial-

ization of the static mode (while the last exploration

frame is displayed) can take several seconds, which

could be improved with an adaptive algorithm where

the amount of primitives is constrained between up-

dates, giving the impression to the user of a steadily

increasing quality as time passes.

Limiting the primitives of the exploration mode

is essential as without it is not possible to navigate

through the neuron forest in real-time.

Acknowledgements

Blue Brain Project for raw neuron data.

REFERENCES

de Heras Ciechomski, P. and Mange, R. (2008). Realtime
neocortical column visualization. In BIOSIGNALS
(2), pages 283–288.

Haines, E. (2006). An introductory tour of interactive ren-
dering. IEEE Computer Graphics and Applications,
26(1):76–87.

Leadwerks (2008). Leadwerks software, usa,
www.leadwerks.com.



Luebke, D., Watson, B., Cohen, J. D., Reddy, M., and
Varshney, A. (2002). Level of Detail for 3D Graph-
ics. Elsevier Science Inc., New York, NY, USA.

Schaufler, G. and Stürzlinger, W. (1995). Generating multi-
ple levels of detail from polygonal geometry models.
In Göbel, M., editor, Virtual Environments ’95 (Eu-
rographics Workshop), pages 33–41. Springer-Verlag:
Heidelberg, Germany.

Shishkovtsov, O. (2005). Chapter 9. deferred shading
in s.t.a.l.k.e.r. GPU Gems 2 : Programming Tech-
niques for High-Performance Graphics and General-
Purpose Computation (Gpu Gems).

Stoll, C., Gumhold, S., and Seidel, H.-P. (2005). Visualiza-
tion with stylized line primitives. In IEEE Visualiza-
tion, page 88.

Tarini, M., Cignoni, P., and Montani, C. (2006). Ambi-
ent occlusion and edge cueing for enhancing real time
molecular visualization. IEEE Transactions on Visu-
alization and Computer Graphics, 12(5):1237–1244.

Visualbiotech (2008). Gabrielstudio (tm), a visualization
library for biotechnology, www.visualbiotech.ch.


